Optoelectronic and Structural Properties of High-Quality GaN Grown by Hydride Vapor Phase Epitaxy

Author:

Molnar R.J.,Aggarwal R.,Liau Z.L.,Brown E.R.,Melngailis I.,Götz W.,Romano L.T.,Johnson N.M.

Abstract

ABSTRACTGallium nitride (GaN) films have been grown by hydride vapor phase epitaxy (HVPE) in a vertical reactor design. We report on GaN growth directly on sapphire using a GaCl surface pretreatment. The electrical properties of these films compare favorably with the highest values reported in the literature for GaN. Specifically, a room temperature Hall mobility as high as 540 cm2 /V-s, with a corresponding carrier concentration of 2×1017 cm−3, have been attained. Additionally, the vesical reactor design has assisted in reducing nonuniformities in both film thickness as well as in transport properties due to depletion effects, as compared with horizontal designs. The dislocation density in these films has been determined by plan-view transmission electron microscopy to be ∼3×l08 cm−2 .Photoluminescence spectra obtained at 2 K show intense, sharp, near-bandedge emission with minimal deep level emissions. Stimulated emission has been observed in these films, utilizing a nitrogen laser pump source (λ=337.1 nm) with a threshold pump power of ∼0.5 MW/cm2 . These results suggest that HVPE is viable for the growth of high-quality nitride films, particularly for the subsequent homoepitaxial overgrowth of device structures by other growth methods such as OMVPE and MBE.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3