Author:
Griffin A. J.,Embury J. D.,Hundley M. F.,Jervis T. R.,Kung H. H.,Scarborough W. K.,Walter K. C.,Wood J.,Nastasi M.
Abstract
ABSTRACTThe effect of compositional wavelength on the residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates was evaluated. Electrical resistivities were measured down to 4 °K using a standard four-point probe measurement system. A differential specimen-curvature technique was used to detennine residual stress, and a mechanical-properties microprobe was employed to obtain hardness and elastic modulus. Characterization techniques included profilometry, Ion-Beam Analysis (IBA) and Transmission Electron Microscopy (TEM). The hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either of the constituents and the hardness predicted by the rule of mixtures. A peak in the net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献