Strain Relaxation at Low Misfits: Dislocation Injection vs. Surface Roughening

Author:

Perovic D.D.,Bahierathan B.,Houghton D.C.,Lafontaine H.,Baribeau J.-M.

Abstract

ABSTRACTTwo competing strain relaxation mechanisms, namely misfit dislocation generation and surface roughening, have been extensively studied using the GexSi1-x/Si (x< 0.5) system as an example. A predictive model has been developed which accurately describes the nature of misfit dislocation nucleation and growth under non-equilibrium conditions. Using optical and electron microscopy, coupled with a refined theoretical description of dislocation nucleation, it is shown that strain relieving dislocations are readily generated at low misfits with a characteristic activation energy barrier regardless of the growth technique employed (i.e. MBE, RTCVD and UHVCVD). Secondly we have studied the alternative elastic strain relaxation mechanism involving surface undulation; x-ray diffraction, electron and atomic force microscopy have been used to characterize GexSi1-x/Si (x<0.5) structures grown by UHVCVD and MBE at relatively higher temperatures. A theoretical model has been used to model the critical thickness for surface wave generation. The conditions governing the interplay between dislocation formation and surface buckling are described in terms of a "morphological instability diagram".

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3