Author:
Kolitsch U.,Seifert H. J.,Ludwig T.,Aldinger F.
Abstract
In order to clarify inconsistencies in the literature and to verify assumed ternary solubilities, the phase equilibria in the Y2O3–Al2O3 –SiO2 system at 1600, 1400, and 1300 °C were experimentally determined using x-ray diffraction (XRD), scanning electron microscope with attached energy-dispersive detector system (SEM-EDX), and electron probe microanalyzer (EPMA). Six quasibinary phases were observed: Y4Al2O9 (YAM), YAlO3 (YAP), Y3Al5O12 (YAG), Y2SiO5, Y2Si2O7 (C and D modifications), and ˜3Al2O3· 2SiO2 (mullite). Y4Al2O9 forms an extended ternary solid solution with the formula Y4Al2(1-x)Si2xO9+x (x = 0 2 ˜0.31). The lowest ternary eutectic temperature was determined at 1371 ± 5 °C by high-temperature differential scanning calorimetry (DSC). The results were compared with previous data available for the Y2O3–Al2O3 –SiO2 system and with data for other RE2O3–Al2O3 –SiO2 (RE = rare earth element) systems.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献