Room temperature reduction of scheelite (CaWO4)

Author:

Welham N. J.

Abstract

A mixture of scheelite and magnesium has been mechanically milled together for 100 h, either with graphite or in a nitrogen atmosphere, with the intention of forming tungsten carbide or nitride. The resultant powders were examined by thermal analysis, isothermal annealing, and x-ray diffraction to determine the effect of milling on the reduction of scheelite. With graphite, nanocrystallite W2C was the exclusive tungsten product; WC was not detected even after annealing at 1000 °C. No nitride formed in the system milled with nitrogen; however, 10 nm crystallites of elemental tungsten were formed. The unwanted phases, MgO and CaO, were readily removed by leaching in acid, leaving a fine powder composed of impact welded aggregates of either carbide or 99% pure tungsten metal.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference50 articles.

1. 44. Welham N.J. , J. Mater. Sci. (1998, in press).

2. Thin film synthesis of tungsten nitride by the CVD method

3. 28. Kerr A. , Welham N. J. , and Willis P. E. , Nanostruct. Mater. (1998, in press).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3