Nanoporous Silica as an Ultralow-k Dielectric

Author:

Jin Changming,Luttmer J.D.,Smith Douglas M.,Ramos Teresa A.

Abstract

As feature sizes in integrated circuits approach 0.18 μm, problems with interconnect resistance-capacitance (RC) delay, power consumption, and crosstalk become more urgent. Integration of low-dielectric-constant (k) materials will partially mitigate these problems, but each candidate with k significantly lower than that of dense silica (k ∼ 4) suffers disadvantages. Current low-k commercialization emphasizes spin-on glasses (SOGs) and fluorinated SiO2 with k > 3, and a number of polymers are under development with k in the range of 2–3. These suffer from potential problems including thermal stability, mechanical properties, low thermal conductivity, and reliability. For some low-k materials, a protective liner covering the conductor is necessary. Although the material k is often cited, the value of practical concern is the effective k, which may be quite different because of this protective liner. As feature sizes shrink, the presence of the liner becomes more problematic and necessitates even lower k materials.Another approach employs nanoporous silica with k of ∼1–4. Porous silica has been classified as an aerogel (dried supercritically) or as a xerogel (dried by solvent evaporation). We use the term nanoporous silica since it captures the key material properties that may be independent of how the films are processed. The ultralow dielectric constant results from porosity incorporation. For a porous material, the dielectric constant is a combination of that of air (∼1) and of the solid phase. The variation of k with porosity (volume fraction of pores) appears in Figure 1.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference14 articles.

1. Deshpande R. , Smith D.M. , and Brinker C.J. , U.S. Patent No. 5,565,142 (1996).

2. Preparation of low-density xerogels at ambient pressure

3. Patents pending.

4. Dielectric properties of aerogels

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3