Biomechanical Properties of Fibroblasts

Author:

Thoumine Olivier,Ott Albrecht

Abstract

Cells are a complex topic of study for materials scientists. They are the fundamental building blocks of living organisms, able to sense their environment and act in response to it. In addition to their many biochemical functions, cells also play a mechanical role: They hold organs in place and move to the locations where they are needed in processes like wound healing, metastasis, or embryogenesis. Their mechanical behavior is mostly determined by a meshwork of three types of connected biopolymers (actin microfilaments, microtubules, and intermediate filaments) that compose a structural framework called the cytoskeleton, surrounded by a lipid membrane (Figure 1). In contrast to this simple picture, cells are very different from polymer gels or liposomes: They are active materials, powered by chemically stored energy. Their mechanical condition is closely linked to their biochemical function; for example, they may “commit suicide,” following a well-defined protocol known as apoptosis, which can be triggered by their mechanical state.The enormous progress of modern cell biology combined with new micromanipulation techniques is leading researchers toward a more global understanding of the mechanical properties of cells and toward finding a functional link between biochemistry, chemical signaling, and cell mechanics, thus crossing the boundaries between these subjects.The characterization of cell mechanical behavior has been the object of numerous studies. Red blood cells are a simple model system; if deprived of a nucleus while retaining a constant surface area, they have properties reminiscent of lipid vesicles.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3