Abstract
Structural materials that can withstand oxidizing and aggressive environments at temperatures above 1000°C constitute an enabling materials technology for a wide range of applications in the industrial, aerospace, and automotive arenas. A few of the industrial uses for such materials are furnace elements and components, power generation components, high-temperature heat exchangers, gas burners and igniters, and high-temperature filters. Aerospace applications include turbine aircraft engine hot-section components such as blades, vanes, combustors, nozzles, and seals. Automotive applications involve components such as turbocharger rotors, valves, glow plugs, and advanced turbine engine parts.There is increasing interest in silicide-based compounds for high-temperature structural uses under oxidizing conditions in the range of 1200–1600°C. In this temperature range, for oxidation and strength reasons, the choice of materials is limited to the silicon-based structural ceramics such as Si3N4 and SiC, and the new class of “high-temperature structural silicides.” An extensive survey of progress in the area of high-temperature structural silicides has recently been published.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
135 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献