Unique Microstructural Development in SiC Materials with High Fracture Toughness

Author:

Shinozaki S.S.

Abstract

Application of silicon carbide (SiC) as a structural material has been limited thus far by its low fracture toughness, even though, in comparison to other ceramic materials, SiC has superior high-temperature strength and creep, wear, corrosion, and oxidation resistance. For automotive applications, a higher fracture toughness is required. For example, the brittleness and catastrophic fracture behavior of SiC materials have resulted in limited use in automobile exhaust-valve systems and turbocharger rotors. High-density SiC bodies can be produced by a pressureless sintering process. However, the sintered bodies often include flaws which are related to processing, primarily, the presence of agglomerates and crystallographic defects in the starting powders. The importance of grain size and shape refinement in the improvement of mechanical properties has been recognized, and thus, processing procedures and sintering aid compositions have been examined extensively. However, one of the key factors is the “as-received” powder characterization (distribution of grain sizes, polytypes, and impurities) for producing sintered bodies of SiC with consistent physical properties.A complexity in SiC materials is that SiC can form various crystal structures having essentially the same chemical composition but a differing number of stacking layers in the unit cell. This is commonly called a polytype. There is only one crystal structure with cubic symmetry, which is identified as 3C or the β-phase. At high temperature, the β-phase transforms to α-phases with hexagonal or rhombohedral symmetry, with 4H, 15R, and 6H (Ramsdell notation) being the major polytypes observed in SiC materials. Preference of the polytype selection during the β- to α-phase transformation is dependent on the chemistry of the sintering aids and metallic impurities in the grain boundaries.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3