Single-Crystal Silicon: Photovoltaic Applications

Author:

Green Martin A.

Abstract

The vast majority of solar cells used in the field are based on single-crystal silicon. There are several reasons for this. First, by using this material, photovoltaic manufacturers can benefit from the economies of scale of the much larger microelectronics industry, where crystalline silicon also dominates. Since lower-quality silicon is acceptable for solar cells, cell manufacturers are able not only to benefit from large production volumes, but also to use off-grade material. The relatively high efficiencies that result from this material, its excellent reliability in the field, its almost complete lack of environmental problems, and recent laboratory progress strengthen the position of this technology.Although there had been earlier work with what might be termed “cast multicrystalline silicon,” the first efficient crystalline silicon cells were reported in 1954. These cells displayed energy conversion efficiencies of about 6%, a substantial improvement over what had been previously demonstrated. Performance improved rapidly through the 1950s, with efficiencies up to about 15% demonstrated in the early 1960s. By this time, their use on spacecraft had become the major commercial purpose of the cells, with reliability a more important attribute than efficiency. The technology then stabilized for a decade. In the early 1970s, another burst of activity pushed the performance of laboratory cells to about 17%. At about this time, a simple processing sequence was developed, based on screen printing the metal contacts to the cell. Anisotropic chemical etching of the silicon to produce surface texture to reduce reflection loss was also implemented, to give the cell structure shown in Figure 1.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference10 articles.

1. Green M.A. , “Photovoltaics: Coming of Age,” Conference Record, 21st IEEE Photovoltaic Specialists Conference, Orlando, May 1990 (IEEE Publ. No. 90CH 2838-1), p. 1.

2. Recent Advances in Silicon Solar Cell Performance

3. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3