Mist Deposition of Micron-Thick Lead Zirconate Titanate Films

Author:

Losego Mark D.,Trolier-McKinstry Susan

Abstract

ABSTRACTA majority of the work published on liquid source misted chemical deposition (LSMCD) has focused on the fabrication of thin ferroelectric films for random access memory (RAM) applications. However, the ability of LSMCD to combine the characteristically good stoichiometry control of a chemical solution deposition process with good film conformality, makes this a desirable technique for other applications, including microactuators and integrated passive components. For these applications, though, LSMCD is limited by its low throughput. This paper describes the feasibility of depositing micron-thick lead zirconate titanate (PZT) films using the LSMCD tool. PZT films of 52/48 composition were deposited on both platinized silicon and platinized alumina substrates. The chamber temperature and the delivery geometry of the LSMCD tool were identified as limiting factors in the rate at which micron-thick samples can be prepared. By switching to a focused nozzle delivery geometry and increasing the chamber temperature from room temperature to 60°C, the total process time for 1 μm thick films can be reduced from 480 min to 90 min. Polarization hysteresis measurements indicated a 75% higher remanent polarization for PZT films deposited on platinized alumina substrates (35 μC/cm2) compared to those deposed on platinized silicon substrates (20 μC/cm2). The polarization loop for the silicon substrate sample was also tilted. These observations are evidence of higher tensile stresses in the PZT films deposited on silicon substrates due to a larger mismatch in the thermal expansion coefficients of the film and the substrate.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3