Formation and Prevention of Chunky Graphite in Slowly Cooled Nodular Irons

Author:

Xi Tang Chong,Fargues J.,Hecht M.,Margerie J. C.

Abstract

ABSTRACTAn experimental device has been designed in order to simulate the solidification of large castings by means of a small-sized sample (1 kg). Once the spheroidizing and inoculation processes have been completed, this sample is slowly cooled at controlled rate and under protective atmosphere in an insulated crucible placed in a laboratory resistance furnace. The maximum freezing time is about 90 min. These tests relate to a base iron having a good degree of purity.SEM, optical microscopy and automated electron microprobe have been used for studying structure and mechanism of chunky graphite formation.Results of over forty tests confirm several data abstracted from literature and provide some more information. For instance, there are different ways of preventing chunky graphite formation : acceleration of solidification, use of Ni-Mg or pure Mg as spheroidizers and, in any case, an antimony addition (0,02%).A rather low carbon equivalent is also a favourable factor. However, for a given carbon equivalent, a final relatively high Si content improves graphite spheroidizing, chunky graphite appearing only if this content results from Fe-Si-Mg additions and/or from overinoculation.Besides, confirmation is given of the detrimental effect of useless rare earth additions (e.g. 0,02%).The matrix surrounding chunky graphite is on average more rich in Si than the one surrounding spheroidal graphite. An oxidizing etching reveals that chunky eutectic has formed at first.Aiming an interpretation of the results, structure examination keeps going on, in order to find out if there could be several kinds of chunky graphite.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

1. 2. Barton R. , Int. Congress, Prague (1971).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3