Understanding and Controlling Transient Enhanced Dopant Diffusion in Silicon

Author:

Stolk P.A.,Gossmann H.-J.,Eaglesham D.J.,Jacobson D.C.,Luftman H.S.,Poate J.M.

Abstract

AbstractImplanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, we have used B doping marker layers in Si to probe the injection of interstitials from near-surface, non-amorphizing Si implants during annealing. The in-diffusion of interstitials is limited by trapping at impurities and has an activation energy of -3.5 eV. Substitutional C is the dominant trapping center with a binding energy of 2-2.5 eV. The high interstitial supersaturation adjacent to the implant damage drives substitutional B into metastable clusters at concentrations below the B solid solubility limit. Transmission electron microscopy shows that the interstitials driving TED are emitted from {311} defect clusters in the damage region at a rate which also exhibits an activation energy of 3.6 eV. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ∼1019/cm3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Damage Formation and Evolution in Ion-Implanted Crystalline Si;Topics in Applied Physics;2009

2. Interaction of ion-implantation-induced interstitials in B-doped SiGe;Materials Science in Semiconductor Processing;2007-02

3. Bibliography;Silicon-Germanium Strained Layers and Heterostructures;2003

4. Transient enhanced diffusion of boron in Si;Journal of Applied Physics;2002-06

5. Activation and dopant sites of ultra-shallow implanted boron and arsenic in silicon;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2002-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3