Author:
Onwona-Agyeman Boateng,Nakao Motoi,Asoka Kumara Gamaralalege Rajanya
Abstract
A dye-sensitized photoelectrochemical (DS-PEC) cell consisting of SnO2 and ZnO nanoparticles was found to yield higher solar energy conversion efficiency than similar cells made of the individual oxide semiconductors when they were sensitized with an indoline dye. The SnO2/ZnO composite solar cell gave an overall energy conversion efficiency of 3.8% while the SnO2 and ZnO individual cells yielded efficiencies of 2.8% and 1.2%, respectively, under standard AM 1.5 irradiation (100 mW cm−2). The broadening of the absorption spectra and a large red shift of the absorption peak were observed by the adsorbing dyes on the composite film suggesting the formation of various kinds of J-aggregates. It is suggested that the formation of the J-aggregates and the presence of the ZnO barrier were responsible for the higher efficiency of the composite cell.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献