Species-resolved imaging and gated photon counting Spectroscopy of laser ablation plume dynamics During krf- and arf-laser pld of amorphous diamond films

Author:

Geohegan David B.,Puretzky Alexander A.

Abstract

ABSTRACTGated photon counting spectroscopy and species-resolved ICCD photography have been applied to study the weak plasma luminescence which occurs following the propagation of the initial ablation plume in vacuum and during the ‘rebound’ of the plume with a substrate during pulsed laser deposition of amorphous diamond. These time- and spatially-resolved spectroscopic techniques were required in order to investigate notable differences between amorphous diamond-like carbon films formed by pulsed laser deposition from ArF (193 nm) and KrF (248 nm) irradiation of pyrolytic graphite in vacuum. Three principal regions of plume emission have been characterized: (1) a bright luminescent ball (v ∼3-5 cm/(μ.s) displaying nearly entirely C+ emission which appears to result from laser interaction with the initial ejecta, (2) a spherical ball of emission (v ∼1 cm/μs) displaying neutral carbon atomic emission lines and, at early times, jets of excited C2, and (3) a well-defined region of broadband emission (v ∼ 0.3 cm/μs) near the target surface first containing emission bands from C2, then weak, continuum emission thought to result from C3 and higher clusters and/or blackbody emission from hot clusters or nanoparticles. For both lasers, the measurements reveal an explosive interaction within the plume which results in a variety of new gas dynamic observations in vacuum:. These include (a) generation of instabilities or jets, (b) confinement of a residual part of the plume near the pellet surface, (c) cluster formation in the collisional, confined regions of the plume, and (d) reflection of the confined region backward to splash and redeposit on the pellet surface. Evidence for gas-phase formation of these clusters in vacuum is indicated from the dynamic evolution of the same cluster bands observed during the collision of the plume with the substrate surface during film growth. Addition of background gases strongly enhances the third (cluster) component, in accordance with plume-splitting phenomena. The combination of sensitive imaging and photon-counting diagnostic techniques permit an understanding of the importance of gas dynamic effects, such as clustering, on the time-of-flight distributions of species arriving during the deposition of thin films in both vacuum and background gases.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3