Post-stress/breakdown leakage mechanism in ultrathin high-κ (HfO2)x(SiO2)1-x/SiO2gate stacks: A nanoscale conductive-Atomic Force Microscopy C-AFM

Author:

Uppal Hasan Javed,Markevich Vladimir,Volkos Stergios N,Dimoulas Athanasios,Hamilton Bruce,Peaker Anthony R

Abstract

AbstractConductive atomic force microscopy (C–AFM) in ultra high vacuum (UHV) has been used to characterize charge trapping in ultrathin as–deposited oxide films of 2–4 nm (HfO2)x(SiO2)1-x/SiO2multilayer gate stacks. Pre– and post–stress/breakdown (BD) dielectric degradation is analyzed on a nanoscale. A systematic observation probes stress induced trap generation facilitating physical stack BD. Degradation is considered in terms of the pronounced localized leakage contribution through the high–κ and interlayer SiOx. Simultaneous nanoscale current–voltage (I-V) characteristics and C–AFM imaging illlutrates charge trapping/decay from the native or stress induced traps with intrinsic charge lateral propagation. A post–stress/BD constant voltage imaging shows effects of stress bias polarity on the BD induced topography and trap assisted nano–current variations. Physical attributes of deformed artifacts relate strongly to the polarity of electron injection (gate or substrate) so discriminating the trap generation in high–κ and interlayer SiOxrevealing non–homogeneous (dynamic) nature of leakage.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3