Abstract
AbstractThe electronic current-voltage characteristics of a nanotransistor is studied. The nanotransistor is assumed to consist of a quantum dot active region connected to the source and drain wires and also attached to a gate. The electric current is shown to be influenced by the coupling of electrons to the longitudinal optical phonons, namely, by the up-conversion of the electrons to the higher excited states in a quantum dot, due to a nonadiabatic effect of the lattice vibrations. In the nanotransistor with asymmetric source and drain contacts the up-conversion leads to a spontaneous electric current, or to a spontaneous voltage between the electrodes. We remind existing experiments which might be related to the effect considered.
Publisher
Springer Science and Business Media LLC