Flame Synthesis Of High Purity, Nanosized Crystalline Silicon Carbide Powder

Author:

Keil D. G.,Calcote H. F.,Gill R. J

Abstract

ABSTRACTSelf-propagating flames in pure silane-acetylene mixtures produce silicon carbide (SiC) powder and hydrogen as main products. Through precise control of the stoichiometry of the reactant gas mixture, it has been possible to produce white SiC at high yields. Characterization of such powders by TEM has shown that the nascent powder consists of polycrystalline hexagonal plates with a narrow size distribution (40 ± 7 nm diameter). Infrared spectroscopy of powders indicate microcrystalline SiC and little bound hydrogen. Chemical analysis by the ANSI method showed the powder to be >96 wt % SiC with an impurity of silica (3.9 weight %) due to air exposure of the powder. Traces (0.1 to 0.2 weight %) of both free carbon and free silicon were found. Metal impurities detected by SIMS were typically low: less than 10 ppba for aluminum, sodium, titanium and vanadium. Boron was observed at 10 ppma. Like the oxygen, the boron impurities are probably associated with exposure of the powders to the atmosphere.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference16 articles.

1. 12. “Methods of Chemical Analysis of Silicon Carbide Abrasive Grain and Abrasive Crude,” ANSI B74.15-1992 (American National Standards Institute, NY, 1992).

2. Laser synthesis and crystallographic characterization of ultrafine SiC powders

3. 10. Selph C. and Hall R. , “ISP Thermodynamic Equilibrium Code,” Air Force Astronautics Laboratory, Edwards AFB, CA, continuously updated.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3