Fabrication and characterization of metal-ferroelectric-insulator-Si diodes and transistors with different HfSiON buffer layer thickness

Author:

Lu Xubing,Ishiwara Hiroshi,Maruyama Kenji

Abstract

Metal-ferroelectric-insulator-Si (MFIS) structures using HfSiON as buffer layers were fabricated, and the impact of buffer layer thickness on the electrical properties of the MFIS devices was investigated. HfSiON films with thickness ranging from 1 to 4 nm were deposited by electron beam evaporation, which exhibited much reduced leakage current when compared to that of SiO2 with the same equivalent oxide thickness. From the viewpoint of polarization and charge injection, the flatband voltage and memory window width dependent on the sweeping voltages were discussed for the MFIS diodes with 1-, 2-, and 4-nm-thick HfSiON buffer layers. Small leakage current as well as excellent long-term data retention characteristics were found for all of these samples. It was also found that MFIS diodes with 2-nm-thick HfSiON buffer layer have the largest memory window width. Ferroelectric-gate transistors fabricated with a Pt/SBT(300nm)/HfSiON (2 nm)/Si gate structure showed a memory window of 0.8 V and a high drain current on/off ratio of 108 for the gate voltage sweep between +4 and −4 V. All of these excellent electrical properties proved that HfSiON acts as an excellent barrier for suppressing both leakage current and atomic interdiffusion.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3