Comparative Study on Electrical and Microstructural Characteristics of ZrO2 and HfO2 Grown by Atomic Layer Deposition

Author:

Kim Hyoungsub,Saraswat Krishna C.,McIntyre Paul C.

Abstract

Ultra-thin ZrO2 and HfO2 dielectric films grown by atomic layer deposition (ALD) are quite promising materials for gate dielectric applications in future transistors, and they exhibit significantly different as-grown microstructures: polycrystalline and amorphous phases, respectively. However, under the identical deposition conditions, both metal oxides show surprisingly similar capacitance–voltage (C–V) characteristics as a function of film thickness, implying that the identities and densities of fixed charge and bulk trapping charge are similar. Factors other than the film microstructure, such as concentration of impurities incorporated during the film deposition, are believed predominantly to control important C–V characteristics. Only the dielectric constant appears to depend significantly on the identity of the dielectric material. It is found that the dielectric constant of ALD-HfO2 (∼20) is significantly lower than that of ZrO2 (∼30) due to the differences in microstructure and also atomic density of the film. In terms of the leakage current characteristics, the effective potential barrier heights between Pt and these two dielectric films are identical (∼2.3 eV) within the experimental uncertainty. Implications for the electrode/dielectric interface electronic structure are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3