Author:
Tamura M.,Shukuri S.,Kawamoto Y.
Abstract
AbstractCross-sectional transmission electron microscopy observations have been carried out to clarify two-dimensional depth distributions of lattice defects generated in high-dose (5 x 1015 ions/cm2 ), P, As, BF2 and B implanted, annealed submicron Si areas as a function of implantation areas. Monte Carlo simulation is also adapted for ion-implantation into submicron Si through fine mask patterns to predict the effect of mask size on spatial damage and impurity profiles. Simulation results predict that the above profiles have a strong mask size dependence for regions below the critical size, where the dopant concentration decreases and damage depth moves toward the surface-side with a reduced implantation area. Some experimental results support simulation results, although most defects, mainly in the P and As implantation, are confined within the original amorphized layers, independent of mask size. However, in BF2 and B implantation, unexpected defect behavior such as variations in defect distribution from one implanted layer to another is found to occur in submicron regions doped by implantation.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献