An Absorption Study of Microcrystalline Silicon Deposited by Hot-Wire CVD

Author:

Diehl F.,Herbst W.,Schröder B.,Oechsner H.

Abstract

ABSTRACTThe effect of variation of the preparation parameters filament temperature Tfil, gas pressure p and hydrogen dilution (H2/SiH4-flow ratio) on the absorption spectra of microcrystalline silicon deposited by the hot-wire technique (hw-μc-Si:H) has been studied by means of Photothermal Deflection Spectroscopy (PDS). We find an enhanced absorption of the μc-Si:H compared to crystalline silicon in the band gap (defect absorption) as well as in the interband transition region. An increase of absorption has already been reported for μc-Si:H films prepared by different techniques. In the case of hw-pc-Si:H we observe a relation between the absorption enhancement and the crystallite size. Increasing the gas pressure from 35 to 400 mTorr (Tfil=1850°C) or the filament temperature from 1750°C to 1950°C (p=100mTorr) the crystallite sizes, deduced from X-ray diffraction measuements, range from 10 to 60 nm. An alteration of the hydrogen dilution by varying the flow ratio between 2.5 and 25 does not affect the crystallite size and the optical absorption remains constant. In our opinion the enhancement cannot be described by a simple superposition of an amorphous and a crystalline absorption coefficient weighted by the volume fractions of the amorphous and crystalline phase, respectively. The possible reasons for the enhanced absorption will be discussed. The variation of the crystallite size with deposition conditions offers the possibility to control the optical absorption of μc-Si:H which is important for incorporating the material either as window layers or intrinsic layers in solar cells.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3