Thermal Growth of He-cavities in Si Studied by Cascade Implantation

Author:

Ntsoenzok E.,Bouayadi R. El,Regula G.,Pichaud B.,Ashok S.

Abstract

AbstractFloat Zone (FZ) silicon samples have been cascade-implanted with helium ions at energies decreasing from 1.9 MeV to 0.8 MeV in steps of 0.1 MeV, with flux maintained between 5 × 1012 and 1 × 1013 He cm-2-1s. The dose was 5×1016 He cm-2 for all the energies except 0.8 MeV where a lower dose of 3×1016 He cm-2 was used. After thermal annealing, the sample was studied by cross section transmission electron microscopy (XTEM) using a Field Emission Gun Microscope (Jeol 2010F). Our results clearly demonstrate that these cavities mainly grow by the Ostwald ripening mechanism. This means a growth by exchange of He and vacancies from smaller to bigger cavities. Further this study provides essential data for resolving the controversy on the growth mechanism governing He-cavities.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defect engineering via ion implantation to control B diffusion in Si;Materials Science and Engineering: B;2009-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3