Gas Source Silicon Molecular Beam Epitaxy

Author:

Hirayama H.,Hiroi M.,Koyama K.,Tatsumi T.,Sato M.

Abstract

ABSTRACTGas source silicon molecular beam epitaxial (Si-MBE) growth is microscopically governed by a disociative adsorption of silicon hydrides, such as Si2H6 source gas molecules on Si surface. The dissociative adsorption generates SiH species on the surface. From this hydride phase, hydrogen desorbs thermaly. The temperature dependence of the growth rate indicated that the hydrogen desorption from the SiH is the rate limiting step. In HBO2 Knudsen cell doping, B adsorbates block the surface migration. Such a blocking effect can be avoided by B2H6 gas dopant, because of the similar incorpration mechanism of B2H6 to that of Si2H6. However, in PH3 gas doping, a crystal quality degradation was observed at a high doping range due to the preferentially high sticking coefficient of PH3 and the resulting surface dangling bond termination. The selective epitaxial growth of a B doped layer using Si2H6 and B2H6 was applied to a novel structured base fabrication for super self-aligned selectively grown base transistor (SSSBT). A successful achievement of the SSSBT fabrication indicates the high potentiality of gas source Si-MBE to the sub-micron size ultra-high speed bipolar large scale integrated (LSI) circuits.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference43 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication technology of SiGe hetero-structures and their properties;Surface Science Reports;2005-11

2. Formation and Properties of SiGe/Si Quantum Wire Structures;Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates;1995

3. {311} facets of selectively grown epitaxial Si layers onSiO2-patterned Si(100) surfaces;Physical Review B;1993-12-15

4. Dissociative scattering ofH3+molecular ions from the Si(100) surface;Physical Review B;1993-09-15

5. Undoped Silicon Layers Grown by Gas Source Molecular Beam Epitaxy Using Si2H6;Japanese Journal of Applied Physics;1992-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3