Author:
Fork D.K.,Garrison S.M.,Hawley Marilyn,Geballe T.H.
Abstract
Control of the in-plane epitaxial alignment of c-axis YBa2Cu3O7−δ (YBCO) films on yttria-stabilized zirconia (YSZ) substrates is necessary for achieving optimal transport properties. We have used pulsed laser deposition to grow homoepitaxial YSZ and heteroepitaxial CeO2 on YSZ single crystal substrates. This procedure dramatically improves the epitaxy of YBCO and reduces the number of low and high angle grain boundaries. We have also studied the effects of preparing the YSZ growth surface with approximately monolayer amounts of CuO, Y2O3, BaO, and BaZrO3 to determine the effects these compositional variations have on the subsequent YBCO epitaxy. CuO, Y2O3, and BaZrO3 induce an in-plane crystallography of YBCO distinct from that initiated with BaO. Both homoepitaxy and monolayer depositions may be carried out in situ and are simple and effective for controlling the epitaxy and electrical properties of YBCO on YSZ. The effects of substrate temperature, oxygen pressure, and yttria content have also been studied.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献