Properties of CuIn1-xGaxSe2 films prepared by the rapid thermal annealing of spray-deposited CuIn1-xGaxS2 and Se

Author:

Slaymaker Laura E.,Hoffman Nathan M.,Ingersoll Matthew A.,Jensen Matthew R.,Olejníček Jiří,Exstrom Christopher L.,Darveau Scott A.,Soukup Rodney J.,Ianno Natale J.,Sarkar Amitabha,Kment Štěpán

Abstract

ABSTRACTMany reported CuIn1-xGaxSe2 (CIGS) thin films for high-efficiency solar cells have been prepared via a two-stage process that consists of a high-vacuum film deposition step followed by selenization with excess H2Se gas or Se vapor. Removing toxic gas and high-vacuum requirements from this process would greatly simplify it and make it less hazardous. We report the formation of CuIn1-xGaxSe2 (x = 0, 0.25, 0.50, 0.75, 1.0) thin films achieved by rapid thermal annealing of spray-deposited CuIn1-xGaxS2 and Se in the absence of an additional selenium source. To prepare the Se layer, commercial Se powder was dissolved by refluxing in ethylenediamine/2,2-dimethylimidizolidine. After cooling to room temperature, this mixture was combined with 2-propanol and the resulting colloidal Se suspension was sprayed by airbrush onto a heated glass substrate. The resulting film was coated with nanocrystalline CuIn1-xGaxS2 via spray deposition of a toluene-based “nanoink” suspension. The two-layer sample was annealed at 550 oC in an argon atmosphere for 60 minutes to form the final CIGS product. Scanning electron microscopy images reveal that film grains are 200-300 nm in diameter and comparable to sizes of the reactant CuIn1-xGaxS2 nanoparticles. XRD patterns are consistent with the chalcopyrite unit cell and calculated lattice parameters and A1 phonon frequencies change nearly linearly between those for CuInSe2 and CuGaSe2.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3