Inorganic-Organic Hybrid Aerogels

Author:

Schubert Ulrich,Schwertfeger Fritz,Hüsing Nicola,Seyfried Elisabeth

Abstract

ABSTRACTOrganically modified silica aerogels were prepared by NH4OH-catalyzed hydrolysis and condensation of RSi(OMe)3 / Si(OMe)4 mixtures, followed by supercritical drying of the alcogels with methanol or CO2. Terminal alkyl or aryl groups, bridging groups or functional organic (methacryloxypropyl or glycidoxypropyl) groups were employed for R. By the proper choice of the organic groups, the RSi(OMe)3 / Si(OMe)4 ratio and the drying conditions, hydrophobic aerogels, being insensitive towards moisture, were obtained with no residual Si-OH or Si-OMe groups left. The transparency and porosity of the organically modified aerogels was only slightly diminished relative to unmodified silica aerogels. The elastic constant of the aerogels was significantly influenced by the kind of organic groups. By pyrolysis of the phenyl-substituted aerogels, nanometer-sized carbon structures were generated. They partly coat the primary aerogel particles and provide a very high mass specific extinction in the wavelengths interval critical for thermal radiative transport.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3