Author:
Žukauskas Artūras,Shur Michael S.,Gaska Remis
Abstract
Until the beginning of the 19th century, flame produced by combustion was the only source of artificial light. Since then, physical phenomena other than pyroluminescence have been used to produce light. Limelight (incandescence of calcium oxide heated by the flame from an oxyhydrogen blowpipe), gas mantles (candoluminescence of gas-flame-heated rare-earth oxides), and the electrical Jablochkoff candle (an early type of carbon-arc lamp) were among the important milestones that led to modern lighting technology. In the 21st century, most of the residential lighting worldwide is provided by tungsten incandescent lamps. Compact fluorescent lamps are also actively promoted because of their higher performance—a broader spectrum for higher-quality white light and elimination of 100–120-Hz flickering, for example. Most work environments employ fluorescent tubes for general lighting, and street lighting is dominated by sodium lamps. Lighting consumes ∼2000 TWh of energy annually, about 21% of the global consumption of electricity. However, during the past 20 years, none of the conventional lighting technologies has exhibited a significant improvement in efficiency. The drive to save lighting energy and reduce its negative environmental impact (i.e., carbon emissions and the disposal of mercury contained in discharge lamps) stimulates the search for new, efficient sources of light.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Reference38 articles.
1. GaN Growth Using GaN Buffer Layer
2. 36. Schweber B. , “Blue LEDs, Digital TV Bring Dayligh. Bright Signs to Masses,” EDN No. 8 (2000) p. 56, available from http://www.ednmag.com.
3. Highly Efficient Light-Emitting Diodes with Microcavities
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献