Experiment and Modelisation Results on Laser Thermal Processing for Ultra-Shallow Junction Formation: Influence of Laser Pulse Duration

Author:

Venturini J.,Hernandez M.,Zahorski D.,Kerrien G.,Sarnet T.,Debarre D.,Boulmer J.,Laviron C.,Semeria M.-N.,Camel D.,Santailler J.-L.

Abstract

AbstractAccording to the International Technology Roadmap for Semiconductors (ITRS), the doping technology requirements for the MOSFET source and drain regions of the future CMOS generations lead to a major challenge. A critical point of this evolution is the formation of ultra-shallow junctions(USJ) for which present technologies, based on ion implantation and rapid thermal annealing, will hardly meet the ITRS specifications. Laser Thermal Processing (LTP) has been shown to be a potential candidate to solve this fundamental problem. In the present paper, LTP experiments have been performed with two XeCl excimer lasers (λ= 308 nm) with different pulse characteristics. The first laser (Lambda Physik, Compex 102) delivers 200 mJ laser pulses with a duration of ∼25 ns. The second laser is an industrial tool (SOPRA, VEL 15) that delivers 16 J laser pulses with a duration of ∼200 ns and allows to anneal a few cm die in a single laser shot. Here we examine the influence of the pulse duration on LTP of B+ (with and without Ge+ pre-amorphization) and BF2 implanted silicon samples on the basis of real-time optical monitoring of the laser induced melting/recrystallisation process, four-point probe resistivity measurements, secondary ion mass spectrometry (SIMS) depth profiles. Experimental results are compared to finite element modelisation (FIDAP Fluent Software) that takes into account both laser pulses. The activated dopant dose, junction depth and sheet resistance, as a function of the laser fluence and shot number for both lasers, confirm the efficiency of laser processing to realize ultra-shallow and highly doped junctions as required by the future CMOS generations. Influence of the pulse duration on the USJ formation process is also discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3