Author:
Awaga Kunio,Coronado Eugenio,Drillon Marc
Abstract
The construction of more and more complex systems starting from elemental molecular units used as building blocks is propelling several disciplines of burgeoning interest, such as supramolecular chemistry, molecular electronics, and molecular magnetism. In the particular context of magnetic molecular materials, an attractive possibility for adding complexity to the material is to use a hybrid approach in which an organic component is combined with an inorganic one. Both purely organic and purely inorganic approaches (see the articles in this issue by Veciana and Iwamura and by Miller, respectively) have been used extensively to obtain molecule-based magnets. The combination of these two kinds of magnetic molecular components has also been successfully explored to design polymeric magnets of different dimensionalities (the metal-radical approach). In this last case, both components play a magnetic role. A step forward in achieving multifunctionality is to design hybrid molecular materials formed by two independent molecular networks, such as anion/cation salts or host/guest solids, whereby each network furnishes distinct physical properties to the solid. This novel class of materials is interesting because it can give rise to the development of materials in which two properties in the same crystal lattice coexist, or materials that exhibit improved properties over those of the individual networks, or to new, unexpected properties due to the mutual interactions between them. One can imagine, for example, the combination of an extended inorganic magnetic layer opening the pathway to cooperative magnetism, with an organic or organometallic molecule that acts as a structural component controlling the interlayer separation. If the molecule inserted between the layers has unpaired electrons, a hybrid compound is produced that combines cooperative magnetism and paramagnetism. Other suitable combinations, such as electronic conductivity and magnetism, or nonlinear optics and magnetism, can also be achieved by wisely choosing the constituent molecules. In this article, we report some relevant examples that illustrate the potential of this hybrid approach in the context of molecule-based magnetic materials.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献