Pendeo-Epitaxy - A New Approach for Lateral Growth of Gallium Nitride Structures

Author:

Zheleva Tsvetanka S.,Smith Scott A.,Thomson Darren B.,Gehrke Thomas,Linthicum Kevin J.,Rajagopal Pradeep,Carlson Eric,Ashmawi Waeil M.,Davis Robert F.

Abstract

A new process route for lateral growth of nearly defect free GaN structures via Pendeo-epitaxy is discussed. Lateral growth of GaN films suspended from {110} side walls of [0001] oriented GaN columns into and over adjacent etched wells has been achieved via MOVPE technique without the use of, or contact with, a supporting mask or substrate. Pendeo-epitaxy is proposed as the descriptive term for this growth technique. Selective growth was achieved using process parameters that promote lateral growth of the {110} planes of GaN and disallow nucleation of this phase on the exposed SiC substrate. Thus, the selectivity is provided by tailoring the shape of the underlying GaN layer itself consisting of a sequence of alternating trenches and columns, instead of selective growth through openings in SiO2 or SiNx mask, as in the conventional lateral epitaxial overgrowth (LEO).Two modes of initiation of the pendeo-epitaxial GaN growth via MOVPE were observed: Mode A - promoting the lateral growth of the {110} side facets into the wells faster than the vertical growth of the (0001) top facets; and Mode B - enabling the top (0001) faces to grow initially faster followed by the pendeo-epitaxial growth over the wells from the newly formed {110} side facets. Four-to-five order decrease in the dislocation density was observed via transmission electron microscopy (TEM) in the pendeo-epitaxial GaN relative to that in the GaN columns. TEM observations revealed that in pendeo-epitaxial GaN films the dislocations do not propagate laterally from the GaN columns when the structure grows laterally from the sidewalls into and over the trenches. Scanning electron microscopy (SEM) studies revealed that the coalesced regions are either defect-free or sometimes exhibit voids. Above these voids the PEGaN layer is usually defect free.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3