Suppression of phase separation in InGaN due to elastic strain

Author:

Karpov S. Yu.

Abstract

The effect of elastic strain in epitaxial InGaN layers coherently grown on GaN wafers on spinodal decomposition of the ternary compound is examined. The effect results in considerable suppression of phase separation in the strained InGaN layers. To predict correctly the position of the miscibility gap in the T-x diagram it is important to take into account the compositional dependence of the elastic constants of the ternary compound. The contribution of the elastic strain to the Gibbs free energy of InGaN is calculated assuming uniform compression of the epitaxial layer with respect to the underlying GaN wafer. The interaction of binary constituents in the solid phase is accounted for on the base of regular solution model. The enthalpy of mixing is estimated using the Valence Force Field approximation. The strain effect becomes stronger with increasing In content in the InGaN. As a result the miscibility gap shifts remarkably into the area of higher InN concentration and becomes of asymmetrical shape. Various growth surface orientations and the type of crystalline structure (wurtzite or sphalerite) provide different effects of the elastic strain on phase separation in ternary compounds.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3