Author:
Misra A.,Noebe R. D.,Gibala R.
Abstract
AbstractThe deformation and fracture behaviors of two directionally solidified multi-phase Ni-Fe-Al ordered alloys were investigated. One alloy consisted of continuous β+γ lamellae with fine γ precipitates within the γ phase. The NiAl-based β phase of this alloy exhibited <100> slip even when deformed parallel to the [001] growth direction. This material exhibited an initiation fracture toughness of ∼ 30 MPa √m and tensile ductility of 10%. The second alloy consisted of aligned but discontinuous γ lamellae within a continuous β phase. Again, the γ phase contained γ precipitates, but unlike the previous alloy, the β phase also contained a fine dispersion of bcc precipitates due to spinodal decomposition. The β phase of this alloy deformed by <111> slip. This four-phase alloy exhibited a fracture toughness of ∼ 21 MPa √m and tensile ductility of 2%. Observations of the plastic zone in both alloys indicated significant plasticity in the β phase due to easy slip transfer from the ductile second phase. The enhanced fracture resistance of these multiphase materials compared to single phase β alloys is attributed in large part to intrinsic toughening of the β phase by an increased mobile dislocation density due to efficient dislocation generation from the β/γ interfaces.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献