Preparation of a-axis YBa2Cu3Ox epitaxial films using direct current-95 MHz hybrid plasma sputtering

Author:

Ito Wataru

Abstract

The dc-95 MHz hybrid plasma magnetron sputtering has been newly developed for obtaining a-axis oriented YBa2Cu3Ox (YBCO) films with an excellent crystallinity. The crystallinity was found to be the best among the films reported so far: the full width at half maximum value of 0.027°in the rocking curve measurement through the film (200) diffraction peak and Xmin of 2% estimated from the barium signal behind the surface peak in Rutherford backscattering (RBS) measurement using a 1 MeV He+ ion. The success in the excellent crystallinity was explained from the ion acceleration model at the ion sheath formed near the substrate surface considering the high ion density, which was revealed to be a characteristic of hybrid plasma. Almost perfect epitaxial growth was also confirmed by transmission electron microscopy. A characteristic grain boundary structure depending on the substrate was observed for the films on NdGaO3 and SrTiO3 substrates. Twist boundary is dominant for the film on NdGaO3, while symmetrical tilt boundary and basal-plane-faced tilt boundary exclusively exist for the film on SrTiO3. The microstructure of the film on SrTiO3 is very resistive against film relaxation. Strain relief was observed by RBS channeling spectra for the relatively high superconducting films. The results of Raman spectroscopy and RBS oxygen resonant measurements indicated that the oxygen content is not a critical parameter for determining the superconductivity of the a-axis oriented YBCO films, but oxygen ordering in the plane of the Cu-O chain and relief of the film strain are important for the improvement of Tc.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3