SON68 Glass Dissolution Kinetics at High Reaction Progress: Experimental Evidence of the Residual Rate

Author:

Gin S.,Frugier P.

Abstract

ABSTRACTSON68 borosilicate glass dissolution involves several parallel mechanisms: interdiffusion, hydrolysis of the silicate network, recondensation of dissolved species leading to the formation of an amorphous gel layer and precipitation of secondary crystalline phases. In a highly confined medium corresponding to geological disposal conditions, the gel formed during SON68 glass alteration quickly becomes protective and the hydrolysis rate drops by about 4 orders of magnitude compared with the initial dissolution rate. This study focuses on the state of reaction progress corresponding to apparent saturation of the solution. At 90°C in static mode, new experimental data show that the decreasing rate due to the protective gel formation is followed by a quasi-constant residual rate. Several hypotheses are discussed. We first demonstrate that silica dissociation related to a slowly rising pH is not a valid explanation. This hypothesis proposed 15 years ago was consistent with a rate controlled by affinity (equilibrium between the glass and solution). The hypothetical precipitation of secondary crystalline phases that consume elements from the protective gel layer is then considered in the light of data obtained with a simplified 8-oxide glass, but this mechanism is not sufficient to account for residual rate of the SON68 glass. Other hypotheses based on the gel evolution (dissolution, evolution of the porous texture) are also proposed. The proposed mechanisms imply the persistence of a protective gel with a constant thickness. Finally, this paper shows that the residual rate could be a decisive phenomenon affecting the long term behavior of glass in disposal conditions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3