Reaction-assisted shock consolidation of RSR Ti–Al alloys

Author:

Yu L. H.,Meyers M. A.,Thadhani N. N.

Abstract

A new method for the shock consolidation of hard metallic powders has been successfully tested. This method extends the process developed by Sawaoka and Akashi for the processing of ceramics (U.S. Patent 4,655,830) to metallic powders. Shock-activated reactions between elemental mixtures of niobium and aluminum powders were used to chemically induce bonding between difficult-to-consolidate intermetallic TiAl compound powder particles. The highly exothermic reactions activated by the passage of shock waves form an intermetallic binder phase which assists in the consolidation of the very hard TiAl alloy powders. Shock impact experiments were carried out utilizing a twelve-capsule shock recovery system in which a plane wave generating lens is used for accelerating a flyer plate to velocities of 1.7 and 2.3 km/s. With these impact velocities, sufficient shock pressures are generated in the powders, contained in capsules, to result in shock-induced reactions between the elemental powders of the mix. Fully dense compacts were successfully recovered and were subsequently characterized by optical, transmission, and scanning electron microscopy, x-ray diffraction, and microhardness testing. Transmission electron microscopy revealed both microcrystalline and amorphous regions in the reaction zone. In one instance, the amorphous material crystallized under the heating effect of the electron beam. Shock induced reaction between elemental powders and with the TiAl powders, producing ternary compounds, was also observed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. Effects of multicompressions on Al2O3 powder

2. Design of Uniaxial Strain Shock Recovery Experiments

3. Explosive Press for Use in Impulsive Loading Studies

4. 13 Vreeland T. , Kasiraj P. , Mutz A. H. , and Thadhani N. N. , in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Murr L. E. , Staudhammer K. P. , and Meyers M. A. ( Dekker M. , 1986), p. 231.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3