Epitaxial Growth Following Crystal Nucleation in Laser-Quenched Si Films on SiO2

Author:

Wong Vernon K.,Chitu A. M.,Limanov A. B.,Im James S.

Abstract

ABSTRACTWe have investigated the solidified microstructure of nucleation-generated grains obtained via complete melting of Si films on SiO2 at high nucleation temperatures. This was achieved using a high-temperature-capable hot stage in conjunction with excimer laser irradiation. As predicted by the direct-growth model that considers (1) the evolution in the temperature of the solidifying interface and (2) the subsequent modes of growth (consisting of amorphous, defective, and epitaxial) as key factors, we were able to observe the appearance of “normal” grains that possess a single-crystal core area. These grains, which are in contrast to previously reported flower-shaped grains that fully make up the microstructure of the solidified films obtained via irradiation at lower preheating temperatures (and amongst which these “normal” grains emerge), indicate that epitaxial growth of nucleated crystals must have taken place within the grains. We discuss the implications of our findings regarding (1) the validity of the direct-growth model, (2) the nature of the heterogeneous nucleation mechanism, and (3) the alternative explanations and assumptions that have been previously employed in order to explain the microstructure of Si films obtained via nucleation and growth within the complete melting regime.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3