The Role of Shape Memory Alloys in Smart/Adaptive Structures

Author:

Schetky L. McD.

Abstract

AbstractAdaptive structures, also called Intelligent or smart materials, refers to the various materials systems which automatically or remotely alter their dynamic characteristics or their geometry to meet their Intended performance. By integrating the sensors and actuators Into the structural system, typically a composite materials, control of shape, vibration and acoustic behavior an be effected. In addition to active control, passive control of system damping can be achieved in these structures. The sensors employed include piezoelectric ceramics, piezoelectric polymer films, ferroelectrics, and fiber optics. For producing the stress induced changes in dynamic characteristics of a composite the actuators are either embedded within the composite or are surface mounted. In general, the piezoelectric type actuator Is used where small strains at high frequencies are appropriate, while shape memory actuators are used when high forces and strains at lower frequencies are required. Static damping, modulus shift effect on acoustic radiation, and strain energy shift of modal response and acoustic radiation of composite materials with embedded shape memory actuators will be discussed. The constitutive equations for shape memory alloys will be described and how these are used in the design of adaptive composite structuresThe term smart materials seems to have become a part of the engineering vocabulary with variants such as Intelligent materials, and their application in adaptive structures. Smart materials consist of a structural component such as a composite such as fiber reenforced resin, with distributed sensors and actuators and a microprocessor. In response to changing external or Internal conditions these materials can change their properties to more effectively perform their function. The external conditions may be environment such as light or heat, loads, vibration or the need to change the geometry or shape of the structure to cope with changing service conditions. Internal conditions may be delamination in a composite, fatigue cracks in a metallic or nonmetallic structure, or other forms of Incipient failure.In reviewing papers presented in the past several years at conferences on smart/adaptive structures one would see a dominant number on various aspects of space structures such as mirrors. antennas, robotics booms and satellite docking. In these areas the control of vibration or the precise control of motion are most often the specific subject addressed. Much of the ongoing research is on control theory and the design of algorithms to define the sensor-actuator-microprocessor Integration. Of concern in this paper Is the actuator itself which, in response to commands from the microprocessor, produces strains and forces in the structure to modify Its acoustic or vibratory response or alter Its shape. These actuators are broadly of two types: low to medium force, low strain, high frequency systems, typically a piezoceramic such as PZT, or a high force, high strain, low frequency actuator which is most likely to be a shape memory alloy element.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3