3D System Integration Technologies

Author:

Ramm Peter,Klumpp Armin,Merkel Reinhard,Weber Josef,Wieland Robert,Ostmann Andreas,Wolf Jürgen

Abstract

AbstractIn the last years strong efforts were made to miniaturize microelectronic systems. Chip scale packages, flip chips and multichip modules are now commonly used in a great variety of products (e. g. mobile phones, hand-held computers and chip cards). Future microelectronic applications require significantly more complex devices with increased functionality and performance. Due to added device content, chip area will also increase. Performance, multi-functionality and reliability of microelectronic systems will be limited mainly by the wiring between the subsystems (so called “wiring crisis”), causing a critical performance bottleneck for future IC generations. 3D System Integration provides a base to overcome these drawbacks. Furthermore, systems with minimum volume and weight as well as reduced power consumption can be realized for portable applications. 3D integrated systems show reduced chip areas and enable optimized partitioning, both which decrease the fabrication cost of the system. An additional benefit is the enabling of minimal interconnection lengths and the elimination of speed-limiting inter-chip interconnects. 3D concepts which take advantage of wafer level processing to avoid increasing package sizes and expensive single component assembling processes have the potential to integrate passive devices resistors, inductors and capacitors into the manufacturing system and provide full advantage for system performance.The ITRS roadmap predicts an increasing demand for systems-on-a-chip (SoC) [1]. Conventional fabrication is based on embedded technologies which are cost intensive. A new low cost fabrication approach for vertical system integration is introduced. The wafer-level 3D SoC technology, optimized to the capability for chip-to-wafer stacking has the potential to replace embedded technologies based on monolithic integration.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Three-dimensional IC trends

2. 7.www.intel.org

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metallization of Vias in Silicon Wafers to Produce Three-Dimensional Microstructures;Russian Microelectronics;2021-01

2. 3D AiP for Power Transfer, Sensor Nodes, and IoT Applications;Antenna‐in‐Package Technology and Applications;2020-03-06

3. A Phase Change Study of Electroplated Copper Wick Structures;11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference;2014-06-13

4. Simplified Cu/Polyimide Damascene Approach Based on Imprint Process of Soluble Block Copolymer Polyimide;Japanese Journal of Applied Physics;2013-10-01

5. Through-Silicon-Via (TSV) Filling by Electrodeposition of Cu with Pulse Current at Ultra-Short Duty Cycle;Journal of The Electrochemical Society;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3