Author:
Takeyama Masao,Gomi Nobuyuki,Morita Sumio,Matsuo Takashi
Abstract
ABSTRACTPhase equilibria in Fe-Ni-Nb ternary system at elevated temperatures have been examined, in order to identify the two-phase region of γ-Fe (austenite) and ε-Fe2Nb (C14). The ε single phase region exists in the range of 27.5 to 35.5 at.% Nb in the Fe-Nb binary system, and it extends toward the equi-niobium concentration direction up to 44 at.% Ni in the ternary system at 1473 K, indicating that more than half of the Fe atoms in Fe2Nb can be replaced with Ni. Thus, the γ+ε two-phase region exists extensively, and the solubility of Nb in γ phase increases from 1.5 to 6.0 at.% with increase in Ni content. The lattice parameters of a and c in the C14 Laves phase decrease with increasing Ni content. The change in a axis is in good agreement with calculation based on Vegard's law, whereas that of c axis is much larger than the calculated value. The result suggests that atomic size effect is responsible for a-axis change and the binding energy is dominant factor for the c-axis change. To extend these findings to development of new class of austenitic steels strengthened by Laves phase, an attempt has been made to control the c/a ratio by alloying. The addition of Cr is effective to make the c/a ratio close to the cubic symmetry value (1.633).
Publisher
Springer Science and Business Media LLC