Application Of Room-Temperature Photoluminescence For Characterizing Thermally Processed Cz Silicon Wafers

Author:

Kirscht F.,Orschel B.,Kim S.,Rouvimov S.,Snegirev B.,Fletcher M.,Shabani M.,Buczkowski A.

Abstract

AbstractPL studies of oxygen precipitation related defects, stress relaxation related defects and doping striations in various silicon materials are presented. The sample spectrum includes a variety of dopant species, and the dopant concentration range covers several 1014 cm-3 to several 1019 cm-3. Lightly doped, precipitation-annealed polished wafers were intentionally contaminated with Fe, Ni and Cu. Several types of epi wafers based on heavily doped substrates have been investigated after full device processing. PL intensity in the investigated doping concentration range is controlled by three basic recombination mechanisms: radiative recombination competing with multi phonon Shockley-Read-Hall (SRH) and Auger recombination. SRH recombination is the major competing mechanism at low dopant concentration, and Auger recombination becomes important at increasing doping levels. Even though not yet fully understood, the PL technique applied in this study has generated practically useful results.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3