Commercialization of Thermoelectric Technology

Author:

Stabler Francis R.

Abstract

ABSTRACTThermoelectric technology capable of solid state electric power generation and cooling has been has been known for almost 180 years. Only in the past 50 years has this technology found its way out of the laboratory and into niche military, space, and commercial products. Most of the profitable commercial products have made their appearance in the past decade. Many of you are working hard to advance the state of the art in thermoelectric materials, and I am sure that you do not want to wait another 180 years, 50 years, or even another decade to commercialize your results. There are many potential ways to commercialize this technology, but the area that I think represents the biggest market is the automotive industry. There are over 17 million automobiles sold in the US each year and over 60 million worldwide. With the possible exception of the electric power industry, I know of no other market segment that is even close to the potential of the automotive industry for using a high volume of thermoelectric materials. Every vehicle produced has an electrical system supplied by a one to two kilowatt generator with increasing power demand as electrical features are added. A high percentage of vehicles have air conditioning systems with 3 to 5 kilowatts of cooling. Sufficiently advanced thermoelectric materials can be the heart of systems that supplement or replace the mechanical or electro-mechanical devices performing these functions today. This paper addresses the boundary conditions for the function, quantity, and value needed to commercialize thermoelectric technology. Timing to introduce subsystems with this technology is also addressed. Thermoelectric technology has to compete with the existing technologies and other emerging technologies to be successfully commercialized. While it seems out of reach today, there is even the potential that sufficiently advanced thermoelectric materials and device construction could one day replace the internal combustion engine and even rival fuel cells in energy conversion efficiency.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3