Author:
Jaegermann Wolfram,Klein Andreas,Fritsche Jochen,Kraft Daniel,Späth Bettina
Abstract
AbstractIn thin film solar cells interfaces between lattice mismatched or dissimilar materials are used for the front and the back contact. A p-i-n device structure should be possible as most simple but ideally suited thin film solar cell. In contrast the interfaces in CdTe solar cells are found to be much more complex containing interdiffused phase boundaries at the front as well as at the back contact. By comparison to non-interdiffused interfaces using contact phases of adapted work functions it can be shown that the contact potentials of the front contact but also of the back contact are dominated by Fermi level pinning. The pinning states are evidently due to dislocation defects at the boundary of CdTe to the contact phases. Based on these results it is concluded that interdiffused phase boundaries or appropriate passivation layers are a precondition for efficient solar cells whenever strongly lattice mismatched or dissimilar materials are combined.
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献