Electronic transport study of high deposition rate HWCVD a-Si:H by the microwavephotomixing technique

Author:

Sheng S.R.,Braunstein R.,Nelson B.P.,Xu Y.

Abstract

ABSTRACTThe electronic transport properties of high deposition rate a-Si:H films prepared by HWCVD have been investigated in detail by employing the microwave photomixing technique. The high deposition rates (up to 1 µm/min.) were achieved by adding a second filament, increasing deposition pressure, silane flow rate, and decreasing filament-to-substrate distance. The effect of the deposition rate on the resultant film properties with respect to the substrate temperature, deposition pressure and silane flow rate was studied. It was found that the film transport properties do not change monotonically with increasing deposition rate. The photoconductivity peaks at ∼70-90 Å/s, where both the drift mobility and lifetime peak, consistent with the deposition rate dependence of the range and depth of the potential fluctuations. High quality, such as a photoconductivity-to-dark-conductivity ratio of ∼105 and nearly constant low charged defect density, can be maintained at deposition rates up to ∼150 Å/s, beyond which the film properties deteriorate rapidly as a result of an enhanced effect of the long-range potential fluctuations due to a considerable increase in the concentration of the charged defects. Our present results indicate that medium silane flow rate, low pressure, and higher substrate temperature are generally required to maintain high quality films at high deposition rates.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3