Laser-Grown Silicon Nanoparticles and Photoluminescence Properties

Author:

Herlin-Boime N.,Jursikova K.,Trave E.,Borsella E.,Guillois O.,Fabbri F.,Vicens J.,Reynaud C.

Abstract

AbstractLight-emitting silicon nanocrystals (Si nc) have attracted much interest due to their possible application as optoelectronic devices. The interest for Si nanopowders is enhanced by their photoluminescence (PL) emission intensity that can be very strong at room temperature. Due to the intrinsic biocompatibility of Si nanoparticles, this strong optical emission intensity as well as the long decay time (mean life time around hundred microseconds) make these powders potential candidates as tracers for in-vivo applications.Si nanopowders were obtained in gram quantities by CO2 laser pyrolysis of silane. The particles in the produced powders are in the size range 10-15 nm. These nanoparticles exhibit strong red photoluminescence after heat treatment. The appearance of intense PL emission is clearly related to the surface oxidation of the powders which must be carefully controlled. Several steps have been identified in the oxidation process. This paper presents a detailed study of the evolution of both the photoluminescence intensity and spectral dependence and of the crystalline structure as a function of the heat treatment. We also show that the nanopowders can be dispersed in liquids and incorporated in gel samples while keeping their intense photoluminescence. This result opens a route towards the fabrication of novel devices

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3