Author:
Bruet B.J.F.,Qi H.J.,Boyce M.C.,Panas R.,Tai K.,Frick L.,Ortiz C.
Abstract
The inner nacreous layer of gastropod mollusc Trochus niloticus is composed of ∼95 wt% planar arrays of polygonal aragonite-based tablets (∼8 μm wide, ∼0.9 μm thick, stacked ∼40 nm apart) and ∼5 wt% biomacromolecules. High-resolution tapping mode atomic force microscope images enabled nanoscale resolution of fractured tablet cross-sections, the organic component, and deformation of individual nanoasperities on top of tablet surfaces. Nanoindentation was performed on individual nacre tablets and the elastic modulus E and yield stress σy were reduced from elastic-plastic finite element simulations yielding E = 92 GPa, σy = 11 GPa (freshly cleaved samples) and E = 79 GPa, σy = 9 GPa (artificial seawater soaked samples). Images of the indents revealed extensive plastic deformation with a clear residual indent and surrounding pileup.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
180 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献