Characterization Of ZnGe(AsxP1-x)2 Crystals By Electrolyte Electroreflectance Spectroscopy

Author:

Angelov Mirko,Goldhahn Rüdiger,Nennewitz Olaf,Schün Silke

Abstract

AbstractThe influence of the material composition on the optical properties of the quaternary compound semiconductor system ZnGe(AsxP1-x)2 was studied for the first time. The crystals have been synthesized by direct solidification from a stoichiometric melt. X-ray diffraction measurements revealed a chalcopyrite type lattice for the quaternary compound. Closer examination by energy dispersive X-ray microprobe analysis yielded the exact element concentrations for the As and P components. Then electrolyte electroreflectance (EER) spectroscopy was used to determine the energies of the fundamental optical transitions as a function of the composition x. The analysis shows an approximately linear increase of the direct band gap with decreasing As content.Furthermore, the influence of the composition on the splitting and ordering of the three highest valence bands was investigated by polarization dependent EER measurements. The spectra for two samples with x = 0.42 and 0.77 allowed the determination of the spin orbit parameter Aso and the crystal field parameter Δ;cf by using the quasicubic model. The values were found close to calculated ones, obtained by the same model under the assumption of a precise linear dependence of the band gap on the composition x.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3