Materials Challenges for CdTe and CuInSe2 Photovoltaics

Author:

Beach Joseph D.,McCandless Brian E.

Abstract

AbstractThe record laboratory cell (∼1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5–1 m2 area) have efficiencies in the 7–11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small - area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present τ ≤ 2 ns to τ ≥ 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the doping level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell per formance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe- and CuInSe2-based devices and translate these gains to commercial photovoltaic modules.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3