Nanocrystals in crystalline silicon: Void formation and hollow particles

Author:

Meldrum A.,Honda S.,White C. W.,Zuhr R. A.,Boatner L. A.

Abstract

Nanophase precipitates of CdS formed in amorphous SiO2 by ion implantation and thermal processing have recently been found to exhibit a “hollow-particle” or “shell-like” microstructure. The present investigations show that this hollow-particle microstructure can be reproduced for a variety of materials other than CdS, and these results provide new insight into the mechanisms responsible for the formation of hollow precipitates embedded in solid hosts. Various elemental metal nanocrystals were formed in (100)-oriented crystalline Si hosts by ion implantation coupled with thermal treatments in which the annealing parameters were varied to investigate the “hollow-particle” formation conditions. The results indicate that depending on the melting points and vapor pressure of the precipitates or on the initial state of the host material, several processes acting either independently or in concert can lead to hollow precipitate formation. First, the implantation of materials having a high vapor pressure, either at the implant temperature or when heated during annealing, can lead to the formation of cavities in the crystalline host. Hollow precipitates can then form by a partial filling and coating of the cavity walls by the implanted species in a diffusion-based gettering/ripening process. Internal void formation can also occur or be enhanced by volume contraction during cooling if the particle solidifies from a liquid phase.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3