Author:
Agarwal Anant,Krishnaswami Sumi,Richmond James,Capell Craig,Ryu Sei-Hyung,Palmour John,Jones Kenneth,Scozzie Charles
Abstract
AbstractThe reduction in the current gain of SiC BJTs has been observed after operating the devices for as little as 15 minutes. It is accompanied by an increase in the on-resistance of the BJT. The origin of the current gain degradation in the BJTs is investigated. Two possible mechanisms, which may be simultaneously present in the device, are thought to be responsible: (a) increase in the surface recombination particularly in the region between the emitter and the base implant, and (b) bulk recombination in the base due to the generation and growth of stacking faults. Initial observation reveals the presence of stacking fault in the base-emitter region when the device is forward-biased. At the same time, minimizing the effect of recombination from the surface using improved passivation helped in the suppression of the current gain degradation in SiC BJTs.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献